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A CLASS OF S H E A R  F L O W S  

OF  A V I S C O U S  C O M P R E S S I B L E  F L U I D  

V. V. Shelukhin UDC 517.958 

I n t r o d u c t i o n .  A variety of flows of a viscous compressible fluid are described by one-dimensional 
equations. Antontsev et al. [1] have studied mathematical problems of flows with plane waves and rectilinear 
trajectories of fluid particles. This paper is concerned with a more general class of motion with plane waves 
without conditions on fluid-particle trajectories. An example of such motion is flow between two parallel 
planes when each liquid plane parallel to the boundary planes moves irrotationally as a solid body; in this 
case, all fluid particles have the same velocity. It is clear that in this motion the trajectories of all particles 
are the same but not necessarily rectilinear. 

To these motions correspond solutions of three-dimensional equations of motion that are invariant with 
respect to the group of translations over variables changing in the bounding planes. For simplicity, we consider 
these planes horizontal. 

The invariance restrictions imply that  only derivatives with respect to time and to the spatial vertical 
variable remain in the equations. All the functions entering into the equations are independent of the spatial 
horizontal coordinates. In this case, the horizontal velocity components satisfy parabolic equations that do 
not contain pressure. And for the vertical velocity component we have a system in which the horizontal 
components are incorporated via an energy equation. 

Thus, the invariance condition virtually reduces the initial system of three-dimensional equations to a 
one-dimensional system which takes into account translations of liquid layers relative to each other in contrast 
to the equations for rectilinear trajectories [1]. 

This paper proves that this problem is uniquely solvable when the pressure depends only on the density 
and the energy-temperature relation is identical to that for a perfect gas. Thus, the possibility for irrotational 
movement of the liquid layers is substantiated. On the other hand, it is established that motion of the liquid 
layers with an additiov. ~1. degree of freedom, i.e., when the material planes can rotate as a solid ~- ody with an 
angular velocity which ~s directed vertically and different for each plane, is impossible. 

As an example of the use of invariant solutions, we consider the role of shear flow in the formation of a 
temperature regime for a compressible viscous fluid layer. The asymptotic behavior of temperature with time 
is investigated for the case where the layer is heat-insulated and the upper bounding plane moves uniformly 
at a constant velocity and at a constant distance from the fixed lower bounding plane. The proof is given that 
the temperature rises in a linear fashion. 

R e m a r k  1. For perfect isothermal gases, the invariance restriction assumes that the trajectories are 
rectilinear in some reference system. This follows from the fact that the horizontal components of the particle 
velocity do not vary with time [2], and, hence, it is possible to move to another inertial reference system in 
which one cannot observe horizontal motion. 

F o r m u l a t i o n  of  t h e  P r o b l e m  and  t h e  Ma in  Resu l t .  Flow of a compressible viscous fluid layer 
(0 < z < 1) between two planes, one of which (upper) moves irrotationally at a distance h = 1 from the fixed 
lower plane, is investigated in a Cartesian coordinate system. The gravity field is directed downward along 
the z axis. 
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It is assumed that the stress tensor P and the strain rate tensor D are in the same rheological relation 
as for the Navier-Stokes model [1]: 

P = ( - p  + A div v)I  + 2#D, 

where ) and /~ are the viscosity coefficients, p is the pressure, v is the velocity vector, and I is the unit 
tensor. Let u, v, and w be the fluid velocity vector components that are directed along the z, y, and z axes, 
respectively; let p be the density, 6 the temperature, and U the specific internal energy. Under the assumption 
that all these flow parameters depend only on the variable z and time t, the laws of conservation of momentum, 
mass, and energy for a viscous compressible fluid are of the form [1] 

p(ut Jr uuz)  = --Pz + vu== -- P9; 

p(v, + uv=) = g v = = ;  

p(w, + uw=) = g w = = ;  

Pt Jr ( p u ) z  = 0 ;  

p(u, + ,u=) = ~ =  - p,= + ~ , ~  + ~(,~_ +w~). 

(1) 

(2) 
(3) 
(4) 
(5) 

Here v = A + 2p; ze is the heat conductivity; and g is the acceleration of gravity (g t> 0). These parameters 
are considered positive constants. System (1)-(5) can be completed by the following equations of state: 

p = ~ ( r ) ,  u = ~ 0 ,  

where r = p-1 is the specific volume, cv is a positive constant, and ~(r )  is a function that is specified on the 
real semiaxis R + = {r : r > 0}. In particular, for dense gases of the Tait type we have ~(r )  = A + B r - "  (A and 
B are constants [2]). Note that  the formulated model does not allow for thermodynamic equilibrium [3]. This 
means that, whatever the dependence of the entropy s on 0 and r ,  the thermodynamic identity dU = 0 d s - p d r  
is generally incompatible with system (1)-(5) for the given equations of state. 

It is assumed that the layer is heat-insulated and slipping in the bounding planes is absent. Let 0, V, 
and W be the components of the displacement velocity of the upper plane. Then, the equalities 

u = v = w = O = = O  for x = 0 ;  u = 8 = = 0 ,  v = V ( t ) ,  w = W ( t )  for z = l  (6) 

correspond to our assumptions. 
The functions u0, v0, w0, p0, and 00 which specify the initial conditions 

(u, v, w, p, 0) = (u0, v0, w0, P0, 00) for t = 0 (7) 

are considered dependent only on z. 
1 

This type of flow can also be described in Lagrangian variables. Let / po(x)dz = 1. If we introduce 
0 ~g 

the mass Lagrange variable x := / p(~, t)d~, then, in the new coordinates, the layer has a unit width as before 
0 

and Eqs. (1)-(5) take the form [1] 

~, = ,,(p~,=)= - p ~  - g ,  ~t = ~ ,  ~ = p-';  (8) 

~,~ = ~, (pv~)=,  w,  = t , ( pw=)= ;  (9)  

~v0, = =(p0=)= - ~ =  + ,p(,~ + =2_) + ~pu~. (10) 

Boundary conditions (6) are thereby unchanged. 
The movement of the upper plane acts as an external heat source, because of internal friction. The 

main goal of this paper is to obtain the asymptotic behavior of the temperature with time for the case 
where the upper plane moves at constant velocity V. More precisely, this paper seeks to prove that 0 
(A/cv)y2t + E + Z(z) as t -~ oo, where E is a constant. 
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Wel l -Posedness .  The structure of Eqs. (8)-(10) is such that they can be solved sequentially. First, 
the functions u and r are found from Eqs. (8), and, then, the functions v and w from system (9). After that 
the function 0 is found from Eq. (10). 

The initial boundary-value problem with conditions 

u = 0, (u,r)]  = (uo, ro) (11) 
I t=0  

for system (8) has been studied in many papers. A detailed bibliography can be found in [1]. L e t  u s  present 
one result from [4] (it is valid, although it is obtained for g = 0). If the conditions 

1 
, / p(v) > 0, p(1) = 1, p (r) < 0, p(r) e C1(0, oo), ~'o(z)dx = 1, 

0 ( 1 2 )  

0 < m -1  ~< r0 < m < oo, ~ 0 ( x ) , r 0 ( x )  c w z ' ( n ) ,  n = { x :  0 < z < 1} 

are satisfied, there is a unique solution u, r of problem (8) and (11) in an arbitrary time interval [0,T]. In 
this case, we have 

O 

e L (0,r; > 0 

Let v0, w0, 00 e w l ( i l ) ,  and vo - x V ,  wo vanish when x E 01l. As for parabolic equations (9), the 
properties of the function r allow us to apply the well-known results [5] which guarantee the existence of 
the functions v and w of the same smoothness as that of u. With this smoothness of the functions u, r ,  v, 
and w, Eq. (10) can be considered linear parabolic for 0. According to [5], this equation is uniquely solvable, 
and 0 has the same smoothness as u. The latter fact can also be established using the approach in [1] for a 
polytropic gas. 

S tabi l iza t ion .  The behavior of the solution of problem (8) and (11) with t ---+ oo has been studied 
in many papers. Kazhikhov et al. [4, 6] proved stabilization in the absence of external forces. Fluid flow in 
the field of external mass forces has been investigated in [7, 8]. It appeared that the limit stationary regime 
is not nondegenerate for all gases. In terms of equations of state and the externM-force field, necessary and 
sufficient conditions were obtained when the stationary regime is not degenerate, i.e., the density does not 
vanish. Kolmogorov and Fomin [8] proved stabilization provided th~.t tke stationary regime is aot degenerate. 

The existence of a nondegenerate stationary regime r -- rs and u = 0 is equivalent to the validity of 
the relations 

1 

p ~  = - g ,  / r , ( ~ ) d ~  = 1, ~, > 0 (14) 

0 

Let us perform a brief analysis of the density in a stationary state for problem (8) and (11) in the case where 
p(r) = r -7, 7 >~ 1. The case of 0 < 7 < 1 has been studied in [7]. It is obvious that the analysis is reduced 
to finding a constant d such that 

1 

d > g, 1 = / ( d  - 
P 

g x ) - l / T d x .  (15) 
0 

The constant d, which is equal to g(1 - exp(-g) )  -1, satisfies these relations for 7 = 1. For 7 > 1, relations 
(15) are solvable with respect to d if and only if g < (')'/(7 - 1))" - g* (this condition was obtained in [8]). 
Indeed, if d is sought for in the form d = qg, from (15) follows an equation for q 

g r ( x ( q  ) - rg ' - r )  = 0 (x(q)  = qr _ (q - 1)r, r = 1 - 1/7). (16) 

Since x(q)  ~< 1 for q ~> 1 and x (q )  ~ 0 as q ~ oo, Eq. (16) is unsolvable for g > g* and uniquely solvable for 
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g < g*. When g = g*, the solution is q = 1, which is incompatible with the inequality from (15). 
Let, along with (12), the function p(r) satisfy the conditions below. For a positive constant H, we have 

1 

H ( r  for 0 < r < ~ l  and lim p ( r ) = o o  ( r  (17) Tp(T) ~ 
r---*0+ \ J / 

?- 

I n  particular, these conditions are satisfied for p(r) = r -~. 
It is shown in [8] that stabilization in problem (8) and (11) takes place if the equation of state p = p(r) 

satisfies conditions (12) and (17) and problem (14) is solvable with respect to rs. In addition, the estimates 

[[u, uz, rz[noo(R+;L2(~))[[ + [ [ ( r -  rs), (r  - rs)z,uzz[L2(R+;L2(fl))[[ <. c, 
(18) 

l l~ , : ' ILoo(@)l l  .< c, Q = {~, t :  o < :~ < I, t > o} 

are valid for the solution. Here and below c denotes, generally speaking, various positive constants that are 
independent of T. Sometimes such constants will be denoted by subscripts. It is shown in the same paper that 
the convergence ]]r - rs, ulL2(fl)ll--, 0 is exponential for t ~ oo. 

T e m p e r a t u r e  A s y m p t o t i c .  Let us consider the special case of problem (6)-(10) for V(t) = const = V 
and W(t)  = O. This means that the upper plane moves uniformly at constant velocity V along the y axis. 
For simplicity, we set w = 0. Allowance for motion along the z axis would not complicate the problem 
mathematically. This is explained by the fact that further investigation consists in deriving time-independent 
estimates for flow parameters. The functions v and w appear in system (8)-(10) in the same way, and each 
of them can be found separately. 

z 

a = v - V  ] r(~, t)d~. Then, a = 0 for z E 0FL, and the equation at = A(pa~)x Denote - u V  is satisfied. 
0 

Here and below the norm and the scalar product in L2(~) are denoted by I1" II and (.,.). From the 
energetic equality 

1 d 2 12 ~ l l a l l  + ~II:~1%,,I = -y(,~, ,~) 

and the inequality llall < llP'/=a~:ll we find the estimate 
t 

lla(t)ll 2 .< exp(-At)lla(O)ll = + v = / exp(-~(t  - ~))ll~,(~)l12d~. (19) 
0 

Thus, by virtue of p ~> c > 0 and IlulL2(Q)II <<. c, the estimate 
oo 

0 

is valid, which means, in particular, that I la ( t ) l l  ~ 0 as z ~ ~o. Moreover, it follows from (19) that this 
convergence is exponential, since this type of decrease with time is valid for the norm II~(t)l l .  

Multiplying Eq. (18) by ax~ and integrating over x, we obtain the equality 

l d  2 ~II,~II + ,~l lp'12c~ll  2 = V(u,a**) - A(p,a,,c~,x). 

By virtue of estimates (18), this leads to the inequality 

~' <. a(t)a + b(t) (~ ( t )  = I I~ ( t ) l l  2, ~(t)  = c l l~ ( t ) l l  2, b(t) = ~ll=(t)l12), 

from which, according to the Gronwall lemma [5], we easily conclude that 

l la~ILoo(R+; L2(~t))ll + I Ia~-IL2(Q)II ~< c. 
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The estimates for functions r ,  u, and a given above allow us to study the behavior of the function e 
for t =-+ cr which is a solution of the problem 

~ve, = ~(~e~)=+r, e~l =o, el =Oo(~), 
I 011 It=O 

where F = f + SV2r, f = -pu= + vpu2z + $pa2z + 2V$a=. 
We examine the function 

~ z 2 a 1 , 2 ,~V 2 

3 ( x ) = a j j < , , ( < ) d ~ d Y . - 2 ( / r s ( : ) d ~ )  + ~ / ( / r . ( ~ ) d ~ )  dy, a- ~e 

0 Y 0 0 0 

Clearly, it is a solution of the problem 

- = I = 0, ze(ps3z)= + AV2(rs 1) 0, fix an 

We consider the function r  

1 

3 ( z ) d z  = o. 
0 

t 1 1 

cyr  = XV2t + A(t) 
o o 

Then, the function ~ = 0 - ~b - fl is a solution of the problem 

1 

~v6 = =(pC=)= + =( (p  - p,)fl=)= + a ,  I 0 . :  0 0 <1 =0 : 00 - r <20) 
0 

1 
Here G : f - f fdx  + AV2(T -- Ts). 

o 
The previous estimates guarantee the inclusion G E L2(Q). To prove this, it will suffice to show that 

u 2 E L2(Q). 
From the inequality J =- max,  ]u=[ <~ I[u==][ we have 

o~ 

q 
o fl 

which, by virtue of estimates (18), ensures the desired inclusion. 
Multiplying Eq. (20) by ~ leads t;o the estimate 

~(Iv,ill'+ 
o 

This means that I I ( ( 0 1 l - - '  0 as  t --+ ~ .  

Since the equality 

t 1 1 1 

0 0 0 0 

holds true, the function A(t) is bounded uniformly over t E R +. In addition, by the Lebesgue theorem [9], 
the limit of the function A exists and is bounded for t --+ o0. 

We denote E = (1/cv)thmA(t) .  Thus, this is proof that the temperature 0 has the asymptotic behavior 

0 --, (A/cv)V2t + E + fl(z) as t -+ 0o in the norm L2(S2). 
It should be noted that the constant E depends not only on the initial temperature but on the entire 

history of motion, i.e., ultimately, on the initial state of the medium. 
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R e m a r k  2. Let us explain why rotation of the liquid planes about vertical axes is impossible. If this 
were the case, it would mean that  the equations 

p(vt + v -  V v )  = div P - pg, P = ( - p  + X div v ) I  + 2#D, 2D = vi,i + vj,i, p = p(p) 

are satisfied by the functions p(x, t) and v (x , t )  of the form 

p=p(x, t ) ,  v = v , ( x , t ) + e x r w ( x , t ) ,  

where x = (x, y, z); r = (0, y, z); e = (1,0, 0); and w(zo, t) is the instantaneous angular velocity of the layer 
z = x0. But this is true only in the case w - 0. 

R e m a r k  3. If system (1)-(5) is completed by the equations of state p = RpO and U = cyO, it becomes 
a model of a perfec~ polytropic viscous gas. This model is more complicated mathematically, since the velocity 
and density cannot be found independently of the temperature; the system becomes entirely indecomposable. 

This work was supported by the Russian Foundation for Fundamental  Research and International 
Scientific Foundation (Grant NR 5300), and also by the Grant Center of Saint Petersburg University (Grant 
ZN 257-94). 
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